Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl pyrido[2,3-b]pyrazine-3carboxvlate

Hoong-Kun Fun,^a* + Madhukar Hemamalini,^a Anita Hazra^b and Shyamaprosad Goswami^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India Correspondence e-mail: hkfun@usm.my

Received 11 October 2011; accepted 25 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.041; wR factor = 0.115; data-to-parameter ratio = 19.1.

The asymmetric unit of the title compound, C₉H₇N₃O₂, is composed of two independent molecules. The crystal structure is stabilized by $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds, forming a three-dimensional network. The crystal structure also features pyrazine-pyrazine π - π interactions [centroidcentroid distance = 3.6994(5) Å] and also pyridine-pyrazine π - π interactions [centroid-centroid distance = 3.6374 (5) Å].

Related literature

For details of heterocyclic esters, see: Listvan et al. (2002); Li et al. (2007); Goswami & Hazra (2009); Goswami et al. (2011). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $C_9H_7N_3O_2$ $M_r = 189.18$ Monoclinic, $P2_1/c$ a = 9.5135(1) Å b = 26.9042 (3) Å c = 6.7837 (1) Å $\beta = 107.686 \ (1)^{\circ}$

V = 1654.24 (4) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^-$ T = 100 K $0.22\,\times\,0.20\,\times\,0.19$ mm

Data collection

```
Bruker SMART APEXII CCD
  area-detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2009)
  T_{\rm min} = 0.975, T_{\rm max} = 0.979
```

Refinement

Table 1

$R[F^2 > 2\sigma(F^2)] = 0.041$	255 parameters
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ \AA}^{-3}$
4876 reflections	$\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

18421 measured reflections

 $R_{\rm int} = 0.025$

4876 independent reflections

4118 reflections with $I > 2\sigma(I)$

Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3A - H3AA \cdots O2A^{i}$	0.93	2.54	3.2401 (13)	133
$C4A - H4AA \cdots N2B^{ii}$	0.93	2.55	3.3311 (14)	141
$C9A - H9AA \cdots N1B$	0.96	2.62	3.4741 (14)	149
$C3B - H3BA \cdots O2B^{iii}$	0.93	2.53	3.2496 (14)	135
$C4B - H4BA \cdots N2A^{iv}$	0.93	2.51	3.3350 (14)	147
$C9B - H9BA \cdots N1A$	0.96	2.57	3.4266 (14)	149

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) x + 1, y, z; (iv) $-x+2, y+\frac{1}{2}, -z+\frac{3}{2}.$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. SG and AH thank the CSIR [No. 01 (2292)/09/EMR-II], Government of India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2453).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Goswami, S. & Hazra, A. (2009). Chem. Lett. 38, 484-485.
- Goswami, S., Hazra, A., Goh, J. H. & Fun, H.-K. (2011). Synth. Commun. 41, 2505-2510.

Li, D. Z., Li, Y., Chen, X. G., Zhu, C. G., Yang, J., Liu, H. Y. & Pan, X. D. (2007). Chin. Chem. Lett. 18, 1335-1338.

Listvan, V. N., Listvan, V. V. & Skekel, A. N. (2002). Chem. Heterocycl. Compd, 38, 1480-1483.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

Acta Cryst. (2011). E67, o3120 [doi:10.1107/S1600536811044412]

Methyl pyrido[2,3-b]pyrazine-3-carboxylate

H.-K. Fun, M. Hemamalini, A. Hazra and S. Goswami

Comment

Heterocyclic esters are important compounds in respect of their biological and pharmaceutical characteristics (Listvan *et al.*, 2002; Li *et al.*, 2007). Recently we have developed a mild methodology for the synthesis of heterocyclic esters from their corresponding aldehydes (Goswami & Hazra, 2009; Goswami *et al.*, 2011). Here we report the crystal structure of methyl pyrido[2,3-b]pyrazine-3-carboxylate.

The asymmetric unit of the title compound consists of two crystallographically independent methyl pyrido[2,3-b]pyrazine-3-carboxylate molecules, (A & B), as shown in Fig. 1. The bond lengths of molecules A and B agree with each other and are within normal ranges (Allen *et al.*, 1987).

In the crystal structure (Fig. 2), the molecules are linked through intermolecular C—H···O and C—H···N hydrogen bonds (Table 1), forming a three-dimensional network. Furthermore, the crystal structure is stabilized by the following π – π interactions: (a) between pyrazine rings (N1A,N3A/C1A,C2A/C6A,C7A, centroid Cg1) Cg1···Cg1(1-x, -y, 1-z) 3.6994 (5) Å and (b) between pyrazine (N1B,N3B/C1B,C2B/C6B,C7B, centroid Cg4) and pyridine (N2B/C2B–C6B, centroid Cg5) rings Cg4···Cg5(x, 1/2-y, 1/2+z) 3.6374 (5) Å

The two independent molecules in the asymmetric unit are strikingly similar in respect of their bond distances, bond angles and thermal parameters. For example, for bond distances the average $\delta/\sigma = 0.88$. The symmetry between molecules A and B is almost that of an inversion centre.

Experimental

Methyl pyrido[2,3-b]pyrazine-3-carboxylate was synthesized from pyrido[2,3-b] pyrazine-3-carbaldehyde by our recently developed techniques (Goswami & Hazra, 2009; Goswami *et al.*, 2011). Single crystals were grown by slow evaporation of a chloroform solution of the compound, Mp 155–156°C.

Refinement

All hydrogen atoms were positioned geometrically, with Csp^2 —H = 0.93 Å and C(methyl)—H = 0.96 Å; they were refined using a riding model, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating group model was applied to the methyl groups.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Fig. 2. The crystal packing of the title compound. Dashed lines indicate hydrogen bonds.

F(000) = 784 $D_{\rm x} = 1.519 \text{ Mg m}^{-3}$

 $\theta = 2.3 - 30.1^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 100 KBlock, brown

 $0.22\times0.20\times0.19~mm$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 6855 reflections

Methyl pyrido[2,3-b]pyrazine-3-carboxylate

Crystal data

C ₉ H ₇ N ₃ O ₂
$M_r = 189.18$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 9.5135(1) Å
b = 26.9042 (3) Å
c = 6.7837 (1) Å
$\beta = 107.686 \ (1)^{\circ}$
V = 1654.24 (4) Å ³
Z = 8

Data collection

4876 independent reflections
4118 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.025$
$\theta_{\text{max}} = 30.1^{\circ}, \theta_{\text{min}} = 2.3^{\circ}$
$h = -13 \rightarrow 12$
$k = -36 \rightarrow 37$
$l = -8 \rightarrow 9$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.115$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0645P)^2 + 0.3345P]$ where $P = (F_o^2 + 2F_c^2)/3$
4876 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
255 parameters	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
O1A	0.93918 (7)	0.07303 (3)	0.70643 (12)	0.01812 (16)
O2A	1.02425 (8)	-0.00559 (3)	0.76407 (12)	0.02050 (17)
N1A	0.53239 (9)	0.03988 (3)	0.73953 (13)	0.01616 (17)
N2A	0.58303 (9)	-0.09571 (3)	0.79786 (14)	0.02002 (18)
N3A	0.74901 (9)	-0.03476 (3)	0.77626 (13)	0.01595 (17)
C1A	0.66889 (10)	0.05049 (4)	0.74572 (15)	0.01556 (19)
H1AA	0.6958	0.0836	0.7411	0.019*
C2A	0.50066 (10)	-0.00925 (3)	0.75265 (14)	0.01429 (18)
C3A	0.35658 (10)	-0.02404 (4)	0.74564 (15)	0.01738 (19)
H3AA	0.2817	-0.0007	0.7284	0.021*
C4A	0.32995 (11)	-0.07339 (4)	0.76471 (16)	0.0193 (2)
H4AA	0.2361	-0.0843	0.7595	0.023*
C5A	0.44732 (11)	-0.10778 (4)	0.79259 (16)	0.0209 (2)
H5AA	0.4274	-0.1411	0.8082	0.025*
C6A	0.60995 (10)	-0.04658 (4)	0.77600 (15)	0.01502 (18)
C7A	0.77626 (10)	0.01276 (3)	0.75932 (14)	0.01413 (18)
C8A	0.92792 (10)	0.02481 (4)	0.74628 (15)	0.01526 (19)
C9A	1.07833 (11)	0.08837 (4)	0.67914 (17)	0.0203 (2)
H9AA	1.0750	0.1233	0.6488	0.031*
H9AB	1.0951	0.0701	0.5668	0.031*
Н9АС	1.1570	0.0819	0.8038	0.031*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

O1B	0.52796 (7)	0.17332 (3)	0.64501 (12)	0.01820 (16)
O2B	0.45239 (8)	0.25302 (3)	0.63114 (13)	0.02204 (17)
N1B	0.93475 (9)	0.20808 (3)	0.61052 (13)	0.01529 (17)
N2B	0.89543 (9)	0.34431 (3)	0.62179 (13)	0.01837 (18)
N3B	0.72566 (9)	0.28254 (3)	0.61794 (13)	0.01472 (16)
C1B	0.79969 (10)	0.19717 (3)	0.61024 (15)	0.01489 (18)
H1BA	0.7715	0.1640	0.6057	0.018*
C2B	0.96972 (10)	0.25733 (3)	0.61735 (14)	0.01400 (18)
C3B	1.11389 (11)	0.27225 (4)	0.62514 (15)	0.0176 (2)
H3BA	1.1861	0.2489	0.6259	0.021*
C4B	1.14411 (11)	0.32193 (4)	0.63151 (16)	0.0199 (2)
H4BA	1.2379	0.3330	0.6372	0.024*
C5B	1.03117 (11)	0.35652 (4)	0.62938 (16)	0.0196 (2)
H5BA	1.0545	0.3901	0.6336	0.024*
C6B	0.86440 (10)	0.29472 (3)	0.61752 (14)	0.01401 (18)
C7B	0.69557 (10)	0.23467 (3)	0.61664 (14)	0.01338 (18)
C8B	0.54412 (10)	0.22230 (4)	0.62971 (15)	0.01495 (18)
C9B	0.39006 (11)	0.15787 (4)	0.67601 (18)	0.0215 (2)
H9BA	0.3901	0.1224	0.6927	0.032*
H9BB	0.3093	0.1673	0.5581	0.032*
H9BC	0.3795	0.1736	0.7977	0.032*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0143 (3)	0.0134 (3)	0.0275 (4)	-0.0008 (2)	0.0076 (3)	0.0009 (3)
O2A	0.0153 (3)	0.0168 (3)	0.0304 (4)	0.0025 (3)	0.0085 (3)	0.0018 (3)
N1A	0.0162 (4)	0.0156 (4)	0.0176 (4)	0.0015 (3)	0.0065 (3)	0.0003 (3)
N2A	0.0175 (4)	0.0140 (4)	0.0271 (4)	-0.0009 (3)	0.0047 (3)	0.0023 (3)
N3A	0.0133 (4)	0.0139 (4)	0.0195 (4)	0.0006 (3)	0.0034 (3)	0.0012 (3)
C1A	0.0165 (4)	0.0129 (4)	0.0183 (4)	0.0012 (3)	0.0068 (3)	0.0008 (3)
C2A	0.0142 (4)	0.0154 (4)	0.0132 (4)	0.0008 (3)	0.0040 (3)	0.0001 (3)
C3A	0.0146 (4)	0.0224 (5)	0.0156 (4)	0.0010 (3)	0.0053 (3)	0.0002 (4)
C4A	0.0155 (4)	0.0243 (5)	0.0181 (4)	-0.0044 (4)	0.0050 (3)	0.0000 (4)
C5A	0.0206 (5)	0.0181 (5)	0.0231 (5)	-0.0045 (4)	0.0051 (4)	0.0014 (4)
C6A	0.0142 (4)	0.0137 (4)	0.0164 (4)	0.0006 (3)	0.0035 (3)	0.0012 (3)
C7A	0.0133 (4)	0.0133 (4)	0.0153 (4)	0.0012 (3)	0.0035 (3)	0.0005 (3)
C8A	0.0144 (4)	0.0144 (4)	0.0165 (4)	-0.0004 (3)	0.0040 (3)	-0.0009 (3)
C9A	0.0165 (4)	0.0168 (5)	0.0298 (5)	-0.0020 (3)	0.0101 (4)	0.0011 (4)
O1B	0.0143 (3)	0.0148 (3)	0.0272 (4)	-0.0014 (2)	0.0087 (3)	0.0005 (3)
O2B	0.0166 (3)	0.0183 (4)	0.0338 (4)	0.0029 (3)	0.0116 (3)	0.0028 (3)
N1B	0.0147 (4)	0.0154 (4)	0.0166 (4)	0.0012 (3)	0.0061 (3)	-0.0005 (3)
N2B	0.0211 (4)	0.0140 (4)	0.0215 (4)	-0.0020 (3)	0.0085 (3)	-0.0009 (3)
N3B	0.0146 (4)	0.0145 (4)	0.0159 (4)	0.0010 (3)	0.0060 (3)	0.0004 (3)
C1B	0.0155 (4)	0.0127 (4)	0.0172 (4)	0.0004 (3)	0.0062 (3)	0.0001 (3)
C2B	0.0134 (4)	0.0156 (4)	0.0132 (4)	0.0008 (3)	0.0043 (3)	0.0000 (3)
C3B	0.0138 (4)	0.0217 (5)	0.0177 (4)	-0.0004 (3)	0.0056 (3)	0.0000 (4)
C4B	0.0157 (4)	0.0245 (5)	0.0195 (5)	-0.0054 (4)	0.0052 (4)	-0.0006 (4)

C5B	0.0225 (5)	0.0170 (5)	0.0196 (5)	-0.0053 (4)	0.0068 (4)	-0.0007 (4)
C6B	0.0144 (4)	0.0143 (4)	0.0139 (4)	0.0002 (3)	0.0051 (3)	-0.0002(3)
C7B	0.0122 (4)	0.0146 (4)	0.0138 (4)	0.0013 (3)	0.0047 (3)	0.0007 (3)
C8B	0.0142 (4)	0.0159 (4)	0.0150 (4)	-0.0004 (3)	0.0048 (3)	0.0007 (3)
C9B	0.0152 (4)	0.0189 (5)	0.0324 (6)	-0.0024 (4)	0.0102 (4)	0.0040 (4)
Geometric paran	neters (Å, °)					
O1A—C8A		1.3361 (11)	O1B-	-C8B		1.3344 (11)
O1A—C9A		1.4512 (11)	01B-	-C9B		1.4511 (11)
O2A—C8A		1.2066 (12)	O2B-	-C8B		1.2041 (12)
N1A—C1A		1.3177 (12)	N1B-	-C1B		1.3174 (12)
N1A—C2A		1.3649 (12)	N1B-	-C2B		1.3637 (12)
N2A—C5A		1.3212 (13)	N2B-	-C5B		1.3183 (13)
N2A—C6A		1.3630 (12)	N2B-	-C6B		1.3648 (12)
N3A—C7A		1.3163 (12)	N3B-	-С7В		1.3187 (12)
N3A—C6A		1.3601 (12)	N3B-	-C6B		1.3608 (12)
C1A—C7A		1.4230 (13)	C1B-	-C7B		1.4239 (13)
C1A—H1AA		0.9300	C1B-	-H1BA		0.9300
C2A—C3A		1.4141 (13)	C2B-	-C3B		1.4146 (13)
C2A—C6A		1.4194 (13)	C2B-	-C6B		1.4200 (13)
C3A—C4A		1.3650 (14)	C3B-	-C4B		1.3650 (14)
СЗА—НЗАА		0.9300	C3B-	-H3BA		0.9300
C4A—C5A		1.4178 (15)	C4B-	-C5B		1.4183 (15)
C4A—H4AA		0.9300	C4B—	-H4BA	(0.9300
С5А—Н5АА		0.9300	C5B-	-H5BA		0.9300
C7A—C8A		1.5074 (13)	С7В—	-C8B		1.5074 (13)
С9А—Н9АА		0.9600	C9B-	-H9BA		0.9600
С9А—Н9АВ		0.9600	C9B-	-H9BB	(0.9600
С9А—Н9АС		0.9600	C9B-	-H9BC		0.9600
C8A—O1A—C9A	4	115.74 (7)	C8B-	-O1B—C9B		115.14 (8)
C1A—N1A—C2A	4	116.29 (8)	C1B-	-N1B—C2B		116.38 (8)
C5A—N2A—C6A	4	116.72 (9)	C5B-	-N2B—C6B		116.57 (9)
C7A—N3A—C6A	4	116.38 (8)	С7В—	-N3B—C6B		116.36 (8)
N1A-C1A-C74	4	121.92 (9)	N1B-	-C1BC7B		121.96 (9)
N1A—C1A—H1A	AA	119.0	N1B-	-C1B—H1BA		119.0
C7A—C1A—H1A	AA	119.0	С7В—	-C1B—H1BA		119.0
N1A—C2A—C3A	4	120.11 (9)	N1B-	-C2BC3B		120.05 (9)
N1A-C2A-C6A	4	121.57 (8)	N1B-	-C2BC6B		121.57 (8)
C3A—C2A—C6A	A	118.31 (9)	C3B-	-C2BC6B		118.38 (9)
C4A—C3A—C2A	A	118.45 (9)	C4B-	-C3BC2B		118.13 (9)
C4A—C3A—H3A	AA	120.8	C4B-	-СЗВ—НЗВА		120.9
С2А—С3А—Н3А	AA	120.8	C2B-	-СЗВ—НЗВА		120.9
C3A—C4A—C5A	A	119.08 (9)	C3B-	-C4BC5B		119.37 (9)
C3A—C4A—H4A	AA	120.5	C3B-	-C4B—H4BA		120.3
C5A—C4A—H4A	AA	120.5	C5B-	-C4B—H4BA		120.3
N2A—C5A—C4A	4	124.53 (10)	N2B-	-C5BC4B		124.55 (9)
N2A—C5A—H5A	AA	117.7	N2B-	-C5B—H5BA		117.7
C4A—C5A—H5A	AA	117.7	C4B-	-C5B—H5BA		117.7

N3A—C6A—N2A	116.20 (8)	N3B—C6B—N2B	116.04 (8)
N3A—C6A—C2A	120.92 (9)	N3B—C6B—C2B	120.96 (9)
N2A—C6A—C2A	122.88 (9)	N2B—C6B—C2B	122.98 (9)
N3A—C7A—C1A	122.81 (9)	N3B—C7B—C1B	122.73 (8)
N3A—C7A—C8A	115.56 (8)	N3B—C7B—C8B	115.13 (8)
C1A—C7A—C8A	121.59 (8)	C1B—C7B—C8B	122.11 (8)
O2A—C8A—O1A	124.97 (9)	O2B-C8B-O1B	125.19 (9)
O2A—C8A—C7A	124.05 (9)	O2B—C8B—C7B	123.84 (9)
O1A—C8A—C7A	110.96 (8)	O1B—C8B—C7B	110.94 (8)
О1А—С9А—Н9АА	109.5	O1B—C9B—H9BA	109.5
О1А—С9А—Н9АВ	109.5	O1B—C9B—H9BB	109.5
Н9АА—С9А—Н9АВ	109.5	Н9ВА—С9В—Н9ВВ	109.5
О1А—С9А—Н9АС	109.5	O1B—C9B—H9BC	109.5
Н9АА—С9А—Н9АС	109.5	Н9ВА—С9В—Н9ВС	109.5
Н9АВ—С9А—Н9АС	109.5	Н9ВВ—С9В—Н9ВС	109.5
C2A—N1A—C1A—C7A	1.75 (14)	C2B—N1B—C1B—C7B	0.02 (13)
C1A—N1A—C2A—C3A	-179.51 (9)	C1B—N1B—C2B—C3B	177.88 (9)
C1A—N1A—C2A—C6A	1.27 (13)	C1B—N1B—C2B—C6B	-1.92 (13)
N1A—C2A—C3A—C4A	-178.29 (9)	N1B-C2B-C3B-C4B	179.91 (9)
C6A—C2A—C3A—C4A	0.95 (14)	C6B—C2B—C3B—C4B	-0.28 (14)
C2A—C3A—C4A—C5A	0.57 (14)	C2B—C3B—C4B—C5B	-0.22 (14)
C6A—N2A—C5A—C4A	0.43 (16)	C6B—N2B—C5B—C4B	0.56 (15)
C3A—C4A—C5A—N2A	-1.35 (16)	C3B—C4B—C5B—N2B	0.09 (16)
C7A—N3A—C6A—N2A	-178.69 (9)	C7B—N3B—C6B—N2B	-179.12 (8)
C7A—N3A—C6A—C2A	1.72 (14)	C7B—N3B—C6B—C2B	-0.48 (13)
C5A—N2A—C6A—N3A	-178.34 (9)	C5B—N2B—C6B—N3B	177.50 (8)
C5A—N2A—C6A—C2A	1.24 (15)	C5B—N2B—C6B—C2B	-1.11 (14)
N1A—C2A—C6A—N3A	-3.16 (14)	N1B-C2B-C6B-N3B	2.25 (14)
C3A—C2A—C6A—N3A	177.61 (8)	C3B—C2B—C6B—N3B	-177.55 (9)
N1A—C2A—C6A—N2A	177.28 (9)	N1B-C2B-C6B-N2B	-179.20 (9)
C3A—C2A—C6A—N2A	-1.94 (14)	C3B—C2B—C6B—N2B	0.99 (14)
C6A—N3A—C7A—C1A	1.31 (14)	C6B—N3B—C7B—C1B	-1.43 (13)
C6A—N3A—C7A—C8A	-176.28 (8)	C6B—N3B—C7B—C8B	176.59 (8)
N1A—C1A—C7A—N3A	-3.24 (15)	N1B-C1B-C7B-N3B	1.77 (15)
N1A—C1A—C7A—C8A	174.20 (9)	N1B-C1B-C7B-C8B	-176.12 (9)
C9A—O1A—C8A—O2A	1.37 (14)	C9B—O1B—C8B—O2B	-3.23 (14)
C9A—O1A—C8A—C7A	-176.73 (8)	C9B—O1B—C8B—C7B	175.04 (8)
N3A—C7A—C8A—O2A	-5.04 (14)	N3B—C7B—C8B—O2B	3.54 (14)
C1A—C7A—C8A—O2A	177.34 (9)	C1B—C7B—C8B—O2B	-178.43 (9)
N3A—C7A—C8A—O1A	173.08 (8)	N3B-C7B-C8B-O1B	-174.76 (8)
C1AC7AC8AO1A	-4.54 (12)	C1B—C7B—C8B—O1B	3.27 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C3A—H3AA···O2A ⁱ	0.93	2.54	3.2401 (13)	133.
C4A—H4AA···N2B ⁱⁱ	0.93	2.55	3.3311 (14)	141.
C9A—H9AA…N1B	0.96	2.62	3.4741 (14)	149.

C3B—H3BA···O2B ⁱⁱⁱ	0.93	2.53	3.2496 (14)	135.
C4B—H4BA···N2A ^{iv}	0.93	2.51	3.3350 (14)	147.
C9B—H9BA…N1A	0.96	2.57	3.4266 (14)	149.

Symmetry codes: (i) x-1, y, z; (ii) -x+1, y-1/2, -z+3/2; (iii) x+1, y, z; (iv) -x+2, y+1/2, -z+3/2.

